【A221】深度学习 :YOLO及SORT算法实现车辆、行人多目标的实时检测和跟踪

2022-02-28 15:02:23      索炜达电子      991     

文件编号:A221

文件大小:607M

开发环境:Python3.8、OpenCV4.5、YoloV3、YoloV4

猿创承诺:该项目亲测正常运行,需远程调试部署需另外收费,确保正常使用,不能正常使用全额退款。

简要概述:利用深度学习中的YOLO及SORT算法实现车辆、行人等多目标的实时检测和跟踪,并利用PyQt5设计了清新简约的系统UI界面,在界面中既可选择自己的视频、图片文件进行检测跟踪,可以通过电脑自带的摄像头进行实时处理,可选择训练好的YOLO v3/v4等模型参数。该系统界面优美、检测精度高,功能强大,设计有多目标实时检测、跟踪、计数功能,可自由选择感兴趣的跟踪目标。

按需写作:

【A221】深度学习 :YOLO及SORT算法实现车辆、行人多目标的实时检测和跟踪

演示视频:

【A221】深度学习 :YOLO及SORT算法实现车辆、行人多目标的实时检测和跟踪

点击查看:系统演示视频 提取码:61ic

效果演示:

        首先展示一下检测跟踪系统软件的功能和效果,系统主要实现的功能是车辆、行人等多目标的实时检测和跟踪,在界面中既可选择自己的视频、图片文件进行检测跟踪,也可以通过电脑自带的摄像头进行实时处理,可选择训练好的YOLO v3/v4等模型参数。

(1)选择视频文件进行检测跟踪:点击左侧视频按钮可弹出文件选择窗口,选择一个自己的MP4或AVI视频文件即可显示视频画面,目标标注在画面框中,右侧显示用时、目标数、置信度、位置坐标,要跟踪的目标可通过下拉框选择。

【A221】深度学习 :YOLO及SORT算法实现车辆、行人多目标的实时检测和跟踪

(2)选择画面中要跟踪的目标:在视频或摄像检测跟踪的过程中,如若想指定某个目标进行跟踪,可通过右侧的目标下拉选框选择,选择时画面暂停等待选择完成,画面中标注框定位到选中的目标。

【A221】深度学习 :YOLO及SORT算法实现车辆、行人多目标的实时检测和跟踪

(3)目标检测、跟踪、计数功能的切换:选择左侧选项,可切换检测、跟踪、计数功能,选择“跟踪计数”可在目标上标记运动轨迹并计数。

【A221】深度学习 :YOLO及SORT算法实现车辆、行人多目标的实时检测和跟踪

(4)利用摄像头进行检测跟踪:点击左侧摄像头按钮,则自动打开电脑上的摄像头设备,检测跟踪的标记信息同样显示在界面中。

【A221】深度学习 :YOLO及SORT算法实现车辆、行人多目标的实时检测和跟踪

(5)选择图片进行目标检测:点击图片选择按钮,弹出图片选择框选中一张图片进行检测,可自由浏览选中某个或多个对象。

【A221】深度学习 :YOLO及SORT算法实现车辆、行人多目标的实时检测和跟踪

由于整个软件的实现代码复杂,为了使得介绍循序渐进,首先介绍如何利用YOLO进行视频中目标对的检测。对于图像中的目标检测算法,其中比较流行的有YOLO、SSD等算法。

注意:本资源已经过调试通过,下载后可通过PyCharm运行;运行界面的主程序为runMain.py,在配置好Python环境后可完美运行;camera_detection_tracking.py及video_detection_tracking.py这两个分别为使用摄像头、视频检测跟踪的脚本文件,亦可直接运行;为确保程序顺利运行,建议配置的Python依赖包版本如下:

(Python版本:3.8)

opencv-contrib-python 4.5.1.48

PyQt5 5.15.2

scikit-learn 0.22

numba 0.53.0

imutils 0.5.4

filterpy 1.4.5

tqdm 4.56.0

远程协助:

温馨提示:索炜达.猿创官方提供收费远程协助,确保您项目运行成功。

点击查看:远程协助相关事项

我们提供完整项目文件清单如下:

文件目录

 ├ 1.项目源码

 ├ 2.运行截图

 └ 3.演示视频

TAGYOLO
  • 1 次
  • 900 分