2022-03-23 23:24:08 索炜达电子 799
文件编号:A231
文件大小:60M
开发环境:Python3.7、OpenCV4.5、PyCharm2020
猿创承诺:该项目亲测正常运行,需远程调试部署需另外收费,确保正常使用,不能正常使用全额退款。
简要概述:手写数字识别,作为机器视觉入门项目,无论是基于传统的OpenCV方法还是基于目前火热的深度学习、神经网络的方法都有这不错的训练效果。当然,这个项目也常常被作为大学/研究生阶段的课程实验。可惜的是,目前网络上关于手写数字识别的项目代码很多,但是普遍不完整,对于初学者提出了不小的挑战。为此,博主撰写本文,无论你是希望借此完成课程实验或者学习机器视觉,本文或许对你都有帮助。
问题描述:本文针对的问题为:随机在黑板上写一个数字,通过调用电脑摄像头实时检测出数字是0-9哪个数字
解决方案:基于Python的深度学习方法:
检测流程如下:
实现步骤
数据集选择
手写数字识别经典数据集:本文数据集选择的FishionMint数据集中的t10k,共含有一万张28*28的手写图片(二值图片)
按需写作:
演示视频:
点击查看:系统演示视频
运行效果:
远程协助:
温馨提示:索炜达.猿创官方提供收费远程协助,确保您项目运行成功。
点击查看:远程协助相关事项
我们提供完整项目文件清单如下:
文件目录
├ 1.项目源码
├ 2.运行截图
└ 3.演示视频